
# FIELD CROPS AGRICULTURAL NOZZLES AND ACCESSORIES







# NOZZLES FOR FIELD CROPS IN THE LONG TERM, LESS IS ALWAYS MORE



Lechler is a world leader in nozzle technology. For over 140 years, we have pioneered numerous groundbreaking developments in the field of nozzle technology. Thanks to our decades of experience with drift-reducing technology, we have been able to make a significant contribution to more gentle and precise application of plant protection products.

We developed the ID 120-05 as early as the 1990s – the first JKI-approved nozzle with 90 % drift reduction – and therefore laid down a marker for the future direction. Just a few years later, the PRE (VA for Syngenta) already made it possible to achieve a 95 % drift reduction for field spraying. Further user-friendly solutions followed at short intervals, such as the patented IDTA injector that can be removed without tools.



We have consistently followed this path with ongoing new developments. For example, the double flat spray nozzle XDT 130 with extremely low drift over the entire pressure range, or the liquid fertilizer border nozzle, which allows completely uniform cross distribution up to the field edge.

In Europe, Lechler has been the number one for nozzle technology for a long time now. However, we do not just see ourselves as a nozzle manufacturer, but above all as a partner in efforts to achieve both environmentally-friendly and efficient agriculture. This is also particularly true for the large growth markets in China and India, where we are already represented by subsidiary companies and a dense sales network.



Knowing the many different requirements relating to crop production is one thing. Implementing them efficiently is quite

A primary objective is to reduce drift on to neighboring crops and other non-target areas. In addition, optimum droplet distribution, deposition and target area coverage must be guaranteed. At Lechler, we strive to constantly optimize all these characteristics.

another. For example, when applying plant protection products, it is always necessary to take into account legal requirements

The Lechler twin flat spray nozzles are a good example of this as they have been continuously further developed over many years. All models spray simultaneously to the front and rear. Different spray angles and droplet spectra ensure optimum covering for every application.

### Three Lechler twin flat spray nozzles in comparison

in addition to crop production aspects.



|                         | IDKT                                                       | IDTA                                                       | XDT                                                                              |
|-------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|
|                         |                                                            |                                                            |                                                                                  |
| Туре                    | Symmetrical air-injector nozzle                            | Asymmetrical air-injector nozzle                           | Symmetrical non-venturi nozzle                                                   |
| Droplet size            | Ultra coarse to medium                                     | Ultra coarse to coarse                                     | Ultra coarse to extremely coarse                                                 |
| Recommended application | Herbicides, fungicides, insecticides and growth regulators | Herbicides, fungicides, insecticides and growth regulators | Pre-emergence and early post-<br>emergence herbicides, fungicides<br>in potatoes |
| Feature                 | Can be used for sprayer speed up to 12 km/h                | Can be used for sprayer speed above 12 km/h                | Maximum drift reduction also at high sprayer speeds                              |



### **IDKT** – the thorough solution

The IDKT is a symmetrical air-injector twin flat spray nozzle in compact design and generates an ultra coarse to medium droplet spectrum. It is suitable for plant protection product applications in cereal crops, rape seed, sugar beet, corn, potatoes, soy bean and sunflowers. It is particularly well suited for application of herbicides, insecticides and fungicides with the focus on covering vertical surfaces at sprayer speeds up to 12 km/h.

The IDKT sprays at a symmetrical angle of 30°/30° to the front and rear. It achieves very good wetting of small grasses and herbs as well as vertical surfaces in the pressure range from 1.5 to 3 bar.



### **Advantages**

- Optimum deposition on foliage and vertical target surfaces thanks to symmetrical twin flat spray jet 30°/30°
- Reduced spray shadows
- Low drift and loss-reducing in the pressure range up to 3 bar (depending on size)
- Suitable for PWM



Optimum wetting thanks to twin flat spray jet







### **IDTA** – the fast solution

The twin flat spray nozzle IDTA generates an ultra coarse to coarse droplet spectrum. With its asymmetrical design and large low-drift pressure range it permits high workrates and is exceptionally suitable for plant protection product applications in cereal crops, rape seed, sugar beet, corn, potatoes, soy bean and sunflowers. This applies particularly to herbicides, insecticides and fungicides with the focus on covering vertical surfaces at sprayer speeds above 12 km/h.

The IDTA sprays at asymmetrical angles of  $120^{\circ}$  to the front and  $90^{\circ}$  to the rear to ensure optimum delivery of plant protection products and deposition. The result is a uniform spray width on the target surface. The flow rate ratios – 60% to the front and 40% to the rear – have been adapted to the requirements of higher workrates and sprayer speeds.

Slightly finer droplets ensure optimum covering in forward driving direction, while a coarser droplet spectrum guarantees the required drift stability to the rear.



#### **Advantages**

- Reduced spray shadows also at sprayer speeds above 12 km/h
- As a long air-injector nozzle, there is only a small change in the droplet spectrum when the pressure is increased in the pressure range 3 to 8 bar
- Reduced spray angle to the rear compensates for the longer "flight path" of the droplets no spraying beyond the field border and stable in wind
- Drift stability over a large pressure range

### **NEW**

### XDT - the low-drift solution

The XDT nozzle combines twin flat spray technology with an ultra coarse to extremely coarse droplet spectrum and a very low fine droplet share. This nozzle is therefore exceptionally suitable for pre-emergence and early post-emergence applications in cereals, rape seed, potatoes, corn, peas, beans and sunflowers. The extremely low drift values in particular make the XDT an interesting solution for protection of non-target areas. Corresponding parameters are specified by the application requirements for active ingredients such as clomazone, prosulfocarb and pendimethalin. Late post-emergence treatment with grass herbicides (with foliage effect) in spring is a boundary application for the XDT nozzle due to the coarse droplet spectrum.

XDT nozzles are characterized by their compact "nozzle in cap" design where the dosing orifice is installed in the nozzle body. The non-venturi nozzles with integrated pre-atomizer are also suitable for equipment with pulse width modulation.



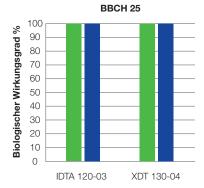


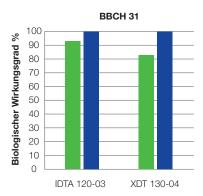
### **Advantages**

- Complete pressure range for low-drift applications
- 40°/40° to front/rear, extremely suitable of higher sprayer speeds
- High workrate and flexible adaptation of sprayer speed
- 130° flat spray jet extremely suitable for lower boom heights, e.g. for sprayers with boom control
- Optimum delivery with reduced spray shadow
- For on-time application even in unfavorable weather conditions



### **Good to know**


The risk of drift depends mainly on the share of fine droplets with a size of less than 100 µm. These very light droplets do not have targeted flight paths, but fall or float very slowly towards the target area and can therefore very easily drift on to non-target areas. In other words, the lower the fine droplet share V100 of a droplet spectrum, the lower the drift of the nozzle. In comparison: the V100 for the XDT up to ten times lower than for conventional air-injector nozzles.


### Studies on efficacy

The efficacy of a herbicide measure in early post-emergence (wheat, BBCH 07) depending on application technology (IDTA 120-03 C, XDT 130-04) with a I/ha rate of 300 I/ha was examined in a study. Two twin flat spray nozzles (IDTA 120-03 C, XDT 130-04) were used for herbicide application for BBCH 25 and BBCH 31 in winter wheat. In the early application in the middle of April, it was not possible to observe any differences between the two nozzles in terms of biological efficacy. The results were identical for both the first and second assessments. A delayed initial effect can be expected in the case of the late application in BBCH 31, but this nevertheless shows the full efficacy in the late application.



XDT nozzles applying a pre-emergence herbicide





■ 21.05.2021 ■ 21.06.2021

Biological efficacy (%) of Axial 50 (pinoxaden) against apera spica-venti (windgrass). Two nozzle types (IDTA 120-03 C, XDT 130-04) were used for herbicide application for BBCH 25 and BBCH 31 in winter wheat. The green bars show the biological efficacy at the first count (21 May 2021). The blue bars show the biological efficacy at the second count (21 June 2021). According to information from: Syngenta, EAME-CPD, E. Siegert, Field Scientist, Döbeln, Saxony.



Wetting in the upper plant area



Wetting in the middle plant area



Wetting in the lower plant area

### **Optimum coverage**

In the area of fungicide application also, the XDT achieves very good results with its twin flat spray technology and in spite of the ultra coarse droplet spectrum. It achieves optimum coverage of the entire plant for potatoes. The hairs on the potato leaves prevent the droplets from rolling off.





# NOZZLES FOR FIELD CROPS PRODUCTION



# TECHNICAL REQUIREMENTS

Optimum application of plant protection products is guaranteed only if narrow flow rate tolerances and uniform distribution are ensured. These parameters are laid down in the JKI and ENTAM guidelines and in the corresponding EN/ISO standards on European and international level.

In the case of JKI-approved Lechler nozzles, the volume flow of new nozzles may deviate from the table value by a maximum of +/-5%.



In combination, new JKI-approved Lechler nozzles must guarantee the most uniform cross distribution possible. The coefficient of variation over the entire width of the spray boom must not exceed 7 % in the specified pressure range and with the corresponding spray heights.

# BIOLOGICAL REQUIREMENTS

In order to achieve the optimum effect, application of plant protection products must be extremely precise. Lechler precision nozzles achieve exact dosage and uniform distribution. Independently of this, the recommendations of the plant protection product manufacturers with respect to I/ha quantities must always be observed. Determination of the application area before use is of decisive importance for optimum deposition of the plant protection product.

Delivery takes place via flat fan and twin flat fan nozzles. Flat fan nozzles generally achieve good crop penetration (e.g. mildew control in cereal crops). In contrast, twin flat fan nozzles are recommended for optimum deposition on vertical target surfaces (e.g. grass control, ear treatment) and to reduce spray shadow (e.g. direct seed, cloddy soil).

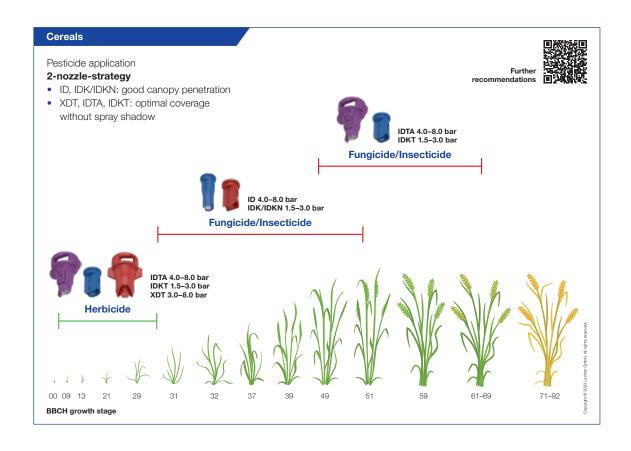


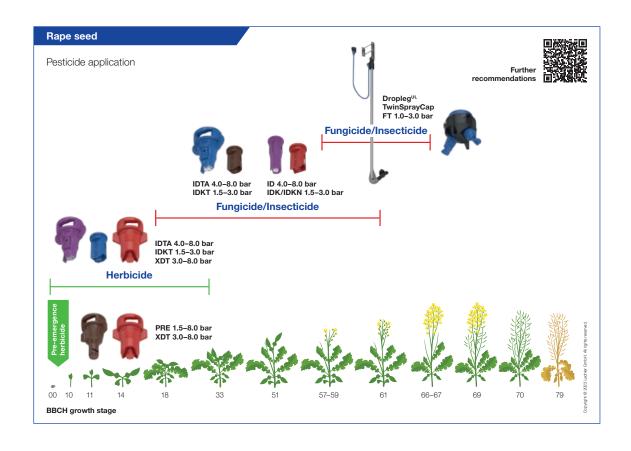
### ENVIRONMENTALLY-RELEVANT REQUIREMENTS

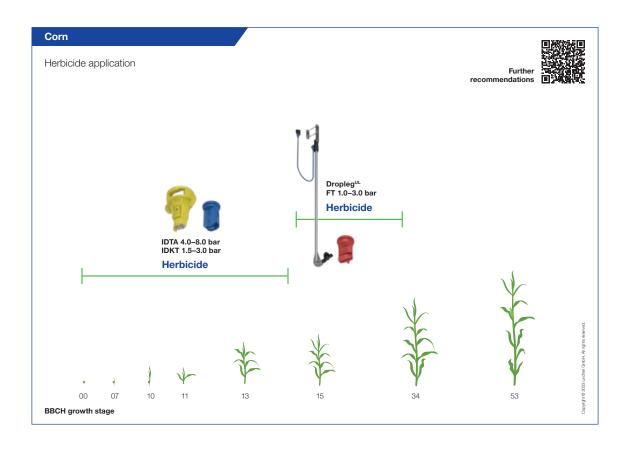
The wind and thermal currents can cause some of the droplets containing the active ingredients to miss the target area. This drift can pollute or damage adjacent crops, contaminate nearby waters and pose a risk to both humans and animals. In addition, drift frequently leads to incorrect dosages for the crop being treated.

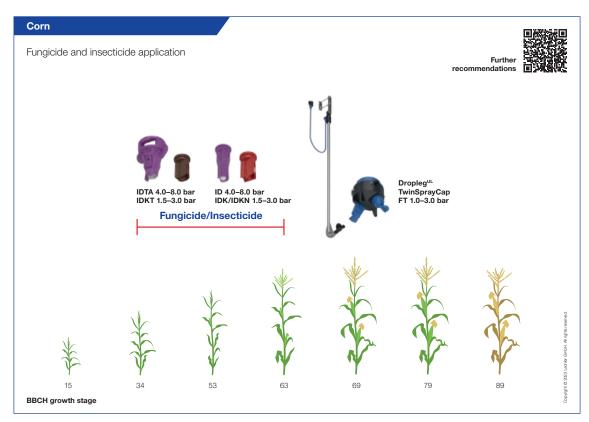
The causes of drift depend on equipment-specific and meteorological factors such as:

- Droplet size
- Sprayer velocity
- Spray height
- Wind speed
- Air temperature
- Air humidity


### LOSS-REDUCING EQUIPMENT

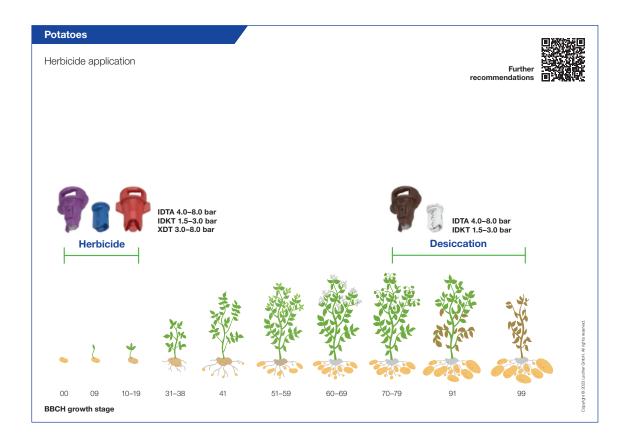

Application regulations for plant protection products, e.g. distance restrictions to water and field boundary structures, have been defined in order to protect non-target organisms. Depending on the toxicity of the plant protection product, the distances from water and field boundaries can be reduced with loss-reducing equipment, e.g. with air-injector nozzles.

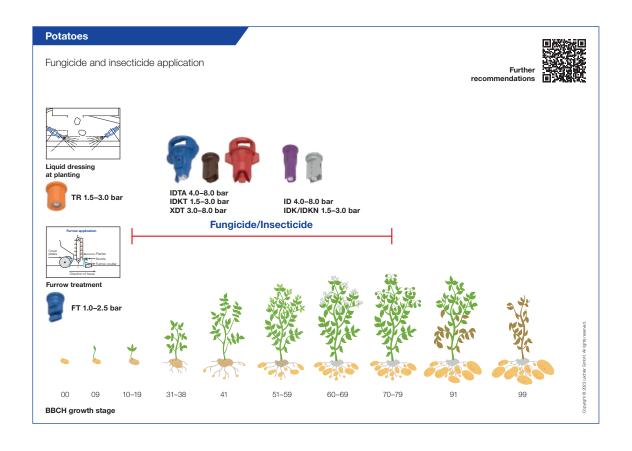

Lechler nozzles are officially approved in many European countries as drift-reducing devices in the drift reduction classes 99/95/90/75/66/50 and 25 %. The criteria on which the distance regulations are based in the individual countries comprise, among other things, the nozzle technology, water type, bank vegetation, width of the field boundary, mixture concentration, process technology (e.g. pressure) as well as external influences such as wind direction, wind speed and temperature.

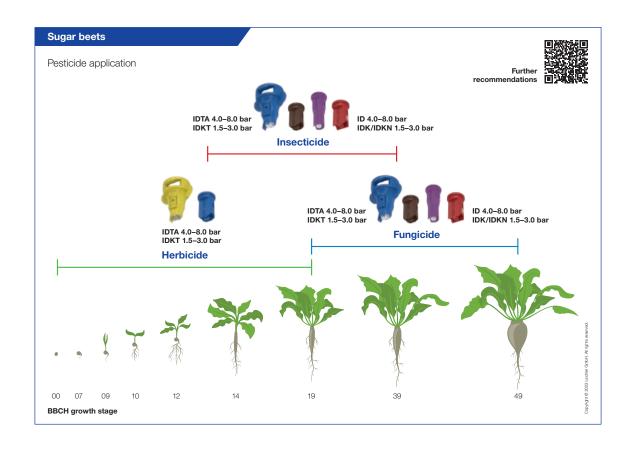

Drift-reducing Lechler nozzles allow areas to be used more efficiently while at the same time protecting field boundaries and water.

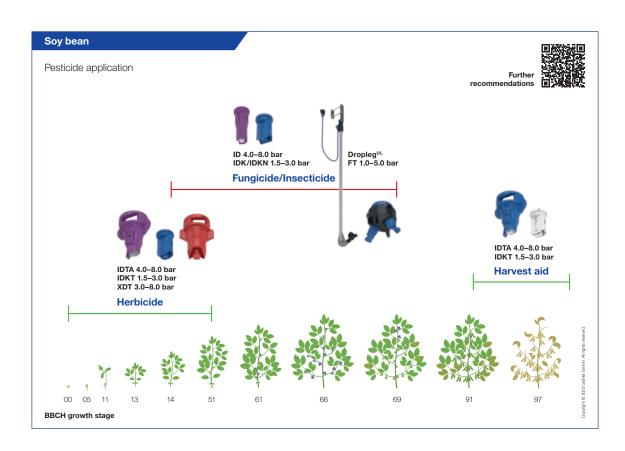
## NOZZLE RECOMMENDATIONS FOR PLANT PROTECTION/HERBICIDE **APPLICATIONS**




















### **Arable crops**

| Recommer     | nded pressure range [bar] | 2/3*- <b>4-8</b>    | 1**/ <b>1.5–3</b> –6 | 1-4-8  | 1***/ <b>1.5-3</b> -6 | 1.5–8     | <b>1.5–3</b> –6                          | 1.5–5 | <b>1.5–2.5</b> –5 | <b>2–3</b> –5 | 1.5-3-8        | <b>2–3</b> –5 | <b>1–3</b> –6( <b>1–2</b> –3) |
|--------------|---------------------------|---------------------|----------------------|--------|-----------------------|-----------|------------------------------------------|-------|-------------------|---------------|----------------|---------------|-------------------------------|
|              | Soil incorporated         | ••                  | ••                   | ••     | ••                    | ••        | ••                                       | ••    | ••                | •             | ••             |               | ••                            |
| Herbi-       | Pre-emergence             | ••                  | ••                   | ••     | ••                    | ••        | ••                                       | ••    | ••                | •             | ••             |               | ••                            |
| cides        | Post-emergence (systemic) | ••                  | ••                   | ••     | ••                    |           | ••                                       | ••    | ••                | •             | ••             | 0             | •                             |
| Fungicides   | Post-emergence (contact)  | •                   | •                    | ••     | ••                    |           | •                                        | ••    | ••                | •             | •              | ••            | •                             |
| Funcialdae   | Contact                   | •                   | •                    | ••     | ••                    |           | •                                        | ••    | ••                | •             |                | ••            | •                             |
| rungiciaes   | Systemic                  | ••                  | ••                   | ••     | ••                    |           | ••                                       | ••    | ••                | •             |                | •             | •                             |
| Insecticides | Contact                   | Contact • • • • • • |                      | ••     | ••                    | •         |                                          | ••    | •                 |               |                |               |                               |
| insecticides | Systemic                  | ••                  | ••                   | ••     | ••                    |           | ••                                       | ••    | ••                | •             |                | •             | •                             |
|              | Liquid fertilizer         | ● (2-4)             | <b>(1**/1.5–2.5)</b> | O(1-4) | O(1***/1.5-2.5)       | ● (1.5–4) | 1.5-4) •(1.5-2.5) •(1.5-2) •(1.5-2) •(2) |       |                   |               | <b>●</b> (1-2) |               |                               |
| G            | rowth regulators          | ••                  | ••                   | 0      | 0                     |           | ••                                       | •     | •                 | •             |                | 0             | •                             |
|              | Irrigation                | ••                  | ••                   | ••     | ••                    | ••        | ••                                       | •     | •                 | •             | ••             |               |                               |

### Arable crops and specialty/row crops

| ed pressure range [bar]  Soil incorporated |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil incorporated                          |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
|                                            |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Pre-emergence                              |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Post-emergence (systemic)                  |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Post-emergence (contact)                   |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Contact                                    |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Systemic                                   |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Contact                                    |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Systemic                                   |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| iquid fertilizer                           |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| wth regulators                             |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| Irrigation                                 |                                                                                                                    |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                             |                                                                                                |                                                                                                                                                                                                                               |
| ic                                         | ost-emergence (systemic) Post-emergence (contact) Contact Systemic Contact Systemic quid fertilizer wth regulators | ost-emergence (systemic)  Post-emergence (contact)  Contact  Systemic  Contact  Systemic  quid fertilizer  wth regulators | ost-emergence (systemic)  Post-emergence (contact)  Contact  Systemic  Contact  Systemic  quid fertilizer  wth regulators | ost-emergence (systemic)  Cost-emergence (contact)  Contact  Systemic  Contact  Systemic  quid fertilizer  wth regulators | ost-emergence (systemic)  Contact Systemic  Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic  Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic  Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic  Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic  Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic Contact Systemic Contact Systemic Why regulators | ost-emergence (systemic)  Contact Systemic Contact Systemic  Contact Systemic  with regulators | ost-emergence (systemic)  Contact Systemic Contact Systemic |

Observe specifications of product manufacturers.

Nozzle sizes: \* ID-01/-015

\*\* IDK 04/-05/-06/-08/-10 IDKN 03/-04



| NEW   |         | NEW |       | NEW   |     |          |               |                        |                 |                   |               |         |                     |                 |
|-------|---------|-----|-------|-------|-----|----------|---------------|------------------------|-----------------|-------------------|---------------|---------|---------------------|-----------------|
| 8     | 0       | •   | •     |       | 1   | ( SON () | 2             |                        | 3               | 9                 |               |         |                     |                 |
| TR    | ITR     | VR  | FD    | FB    | FL  | FS       | IS            | IDKS                   | BN              | OC (S)            | Е             | ID      | IDK                 | AD              |
| 80/60 | 80      | 130 | 130   | 100   | 160 | 100      | 80            | 80                     | 100             | 90                | 80            | 90      | 90                  | 90              |
|       |         |     |       |       |     |          | 26            | 27                     |                 |                   | 23            | 18      | 19                  | 21              |
| 78    | 80      | 82  | 84    | 86    | 90  | 88       | 94            | 96                     | 98              | 100               | 104           | 72      | 74                  | 76              |
|       | ++      | +++ | +++   | +++   | +++ | +++      | ++            | +                      | _               | _                 | _             | ++      | +                   | 0               |
|       |         |     |       |       |     |          |               |                        |                 |                   |               | Å       |                     |                 |
|       |         |     |       |       |     |          |               | l                      |                 |                   |               |         |                     |                 |
| 3–8   | 3-5-10  | 2–8 | 1.5–4 | 1.5–4 | 1–5 | 1–3***/4 | 2- <b>4-8</b> | 1****/ <b>1,5–3</b> –6 |                 | <b>1.5–2.5</b> –5 |               | 2–8     | 1.5–8               | <b>1.5–3</b> –6 |
| 0     | 0       |     |       |       |     |          | ••            | ••                     |                 | ••                |               | ••      | ••                  | ••              |
| 0     | 0       |     |       |       |     |          | ••            | ••                     |                 | ••                |               | ••      | ••                  | ••              |
| ••    |         |     |       |       |     |          | •             | •                      |                 | ••                |               | •       | •                   | •               |
| ••    | 0       |     |       |       |     |          | •             | •                      |                 | ••                |               | •       | •                   | •               |
| •     | •       |     |       |       |     |          | ••            | ••                     |                 | ••                |               | ••      | ••                  | ••              |
| ••    | 0       |     |       |       |     |          | •             | •                      |                 | ••                |               | •       | •                   | •               |
| •     | •       |     |       |       |     |          | ••            | ••                     |                 | ••                |               | ••      | ••                  | ••              |
|       | ● (3-5) | ••  | ••    | ••    | ••  | ••       | ● (2-4)       | • (1*****/1.5-2.5)     |                 | O(1.5-2)          |               | ● (2-4) | <b>● (</b> 1.5–2.5) | ● (1.5-2.5)     |
| 0     | 0       |     |       |       |     |          | ••            | ••                     |                 | •                 |               | ••      | ••                  | ••              |
|       | •       | ••  | ••    | ••    | •   | •        | ••            | ••                     |                 | •                 |               | ••      | ••                  | ••              |
|       |         |     |       |       |     |          |               |                        |                 |                   |               |         |                     |                 |
| 3–8   |         |     |       |       |     |          | 2- <b>4-8</b> | 1****/ <b>1.5–3</b> –6 | 1-2- <b>4-6</b> | <b>1.5–2.5</b> –5 | <b>1–3</b> –4 |         |                     |                 |
| 0     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | ••            |         |                     |                 |
| 0     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | ••            |         |                     |                 |
| 0     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | ••            |         |                     |                 |
| ••    |         |     |       |       |     |          | •             | •                      | ••              | ••                | ••            |         |                     |                 |
| ••    |         |     |       |       |     |          | •             | •                      | ••              | ••                | ••            |         |                     |                 |
| •     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | ••            |         |                     |                 |
| ••    |         |     |       |       |     |          | •             | •                      | ••              | ••                | ••            |         |                     |                 |
| •     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | ••            |         |                     |                 |
|       |         |     |       |       |     |          | ● (2-4)       | • (1*****/1.5-2.5)     | O(1-2)          | O(1.5–2)          | O(1-2)        |         |                     |                 |
| 0     |         |     |       |       |     |          | ••            | ••                     | ••              | ••                | •             |         |                     |                 |
|       |         |     |       |       |     |          |               |                        |                 |                   |               |         |                     |                 |

### **Good to know**

-- = not drift-reducing

= very well-suited

-= slightly drift-reducing

= well-suited

You can find further information in our main catalogue "Agricultural Spray Nozzles and Accessories" and online at **www.lechler-agri.de**.

 $\bigcirc$  = less well-suited

o = drift-reducing + = very drift-reducing + + = highly drift-reducing

+ + + = extremely drift-reducing



### Air-injector flat spray nozzles ID-120/ID-90





### **Crop production Ground care**

- · Air-aspirating flat spray nozzle
- Extremely low-drift

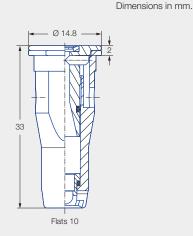
### **Advantages**

- 90% drift reduction for: ID-120-025 to -06
- Drift stability over a large pressure range thanks to long injector design
- Timely application even under adverse weather conditions
- Increased workrate due to flexible use over a wide pressure range adaptation by changing the sprayer speed and I/ha rate without nozzle changes
- Very good deposition structure and crop penetration
- Suitable for PWM



JKI approval as loss-reducing: 90/75/50%

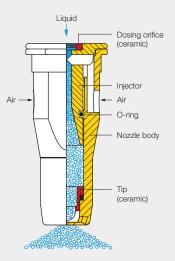
G 1965, G 1966, G 1968, G 1969, G 1970, G 1971, G 1972, G 1973, G 1974, G 2088,

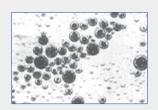

JKI approval for mixed equipment and border nozzle IS.



**Current list at:** www.lechler.com/de-en/ service/loss-reducing






Series ID



Injector can be removed without tools





**Bubble formation** 

### **Application:**



Plant protection products and growth regulators



Liquid fertilizer delivery



Edge application Can be combined with border nozzle IS 80



Golf course

### **Technical data:**



Nozzle sizes 01 - 10



Spray angles 90°, 120°



Materials POM, ceramic





- ID-01 to -015: 3-**4-8** bar
- ID-02 to -10:
- 2-4-8 bar
- UAN: 2-4 bar



**Recommended strainers** 

- 80 M 01
- 60 M 015-04
- 25 M 05-10



**Droplet sizes** Ultra coarse - medium



Width across flats





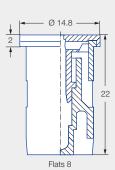
### Compact air-injector flat spray nozzles IDK 120/IDK 90 / IDKN 120



### **Crop production Ground care**

Dimensions in mm.

- Air-aspirating flat spray nozzle
- Very low drift


### **Advantages**

- 95% drift reduction for: IDK 90-015 C and -02 C with 25 cm nozzle spacing
- 90% drift reduction for:
  - IDK 120-05 to -06
  - IDKN 120-03 to -04
- Compact design
- Large droplet size range from ultra coarse to medium
- Very low drift and loss-reducing in the pressure range up to 3.0 bar (depending on size)
- Inexpensive alternative to conventional standard nozzles
- Very good deposition structure and crop penetration
- Suitable for PWM









**IDK** 

**IDK-C** 

**IDKN** IDKN characteristic: Nozzle body with white stripe

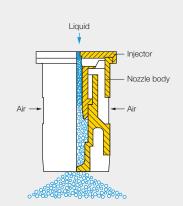
### Series IDK/IDKN



### JKI approval as loss-reducing: 90/75/50%

G 1661, G 1662, G 1663, G 1683, G 1718, G 1799, G 1800, G 1801, G 1802, G 1936, G 2300, G 2301, G 2311

JKI approval for mixed equipment and border nozzle IDKS.




**Current list at:** www.lechler.com/de-en/ service/loss-reducing





Injector can be removed without tools



### Application:



Plant protection products and growth regulators



Liquid fertilizer delivery



Spray frame



**Edge application** Can be combined with border nozzle IDKS 80



Golf course



Backpack sprayer



Greenhouse

#### Technical data:



Nozzle sizes

01 - 10



Spray angles 90°, 120°



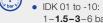
Materials POM, ceramic



Pressure ranges

1-**1.5-3**-6 bar

**Recommended strainers** • 80 M 01




**Droplet sizes** 

Ultra coarse - medium



Width across flats



 IDKN 03 to -04. 1-**1.5-3**-6 bar

UAN: 1.0–2.5 bar



• 60 M 015-04





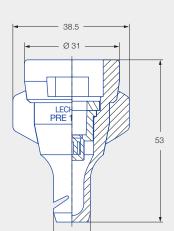




# Pre-emergence flat spray nozzle



Dimensions in mm.


### **Crop production Ground care**

- Extremely low-drift flat spray nozzle
- · For timely application of preemergence herbicides

### **Advantages**

- 95% drift reduction from 1.5 to 5 bar
- Flexible implementation of distance to water requirements
- Wide pressure range from 1.5-8 bar
- High workrate through simple adaptation of I/ha rate and sprayer
- · Timely application even under adverse weather conditions
- Nozzle in cap with MULTIJET bayonet system (incl. gasket)
- Suitable for PWM

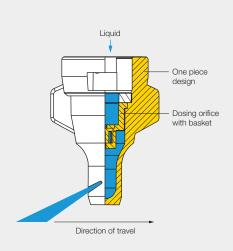




Series PRE



JKI approval as loss-reducing: 95/90%


G 1981



**Current list at:** www.lechler.com/de-en/ service/loss-reducing



Pre-chamber can be removed without tools



### **Application:**



Herbicide pre-emergence



Liquid fertilizer delivery



Golf course

### Technical data:



Nozzle size 05



Spray angle 130°



Material POM



Pressure ranges

• 1.5-8 bar • UAN: 1.5-4 bar



Recommended strainer 25 M



**Droplet size** Ultra coarse

LULLER



### Anti-drift flat spray nozzles AD 120/AD 90



### **Crop production**

### Ground care

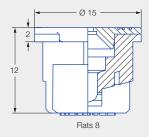
Dimensions in mm.

Low-drift flat spray nozzle

#### **Advantages**

- Application with medium to coarse droplets even with low I/ha rates
- Optimized atomization and reduced fine droplet share thanks to integrated pre-chamber
- Pre-atomizer can be removed without tools

NEW • Pre-atomizer has flush contact


- with twist lockPre-atomizer can be removed
- for cleaningCompact design
- Suitable for PWM



AD



AD-C



Series AD







Removable pre-atomizer

### Application:



Plant protection products and growth regulators



Backpack sprayer



Greenhouse

### Technical data:



Nozzle sizes 015-04



Spray angles 90°, 120°



Materials
POM, ceramic



Pressure ranges 1.5-3-6 bar



Recommended strainers

- 80 M 015
- 60 M 02-04

la la la la la

**Droplet sizes**Coarse – fine



Width across flats



## Multirange flat spray nozzles LU 120/LU 90



### Crop production Ground care

Dimensions in mm.

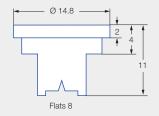
• Universal flat spray nozzle with fine droplet spectrum

### **Advantages**

- Extended pressure range
- Low drift in the pressure range up to 2.5 bar
- Fine-droplet application
- High manufacturing quality
- Suitable for PWM








LU-C

LU-S

### Series LU

LU



### Application:



Plant protection products and growth regulators



Edge application Can be combined with border nozzle OC



Backpack sprayer



Greenhouse

### Technical data:



Nozzle sizes 01-08



Spray angles

90°, 120°



Materials POM, ceramic, stainless steel



Pressure ranges **1.5-2.5**-5 bar



**Recommended strainers** 

- 80 M 01 015
- 60 M 02-04
- 25 M 05-08



**Droplet sizes** 

Coarse - very fine



→ Width across flats

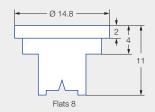
8 mm





### **Crop production Ground care**

Dimensions in mm.


- Flat spray nozzle with rectangular liquid distribution
- For band and row spraying

### **Advantages**

- 90 % drift reduction for 8002 to 8004 E
- Fully formed spray angle from 1 bar
- Uniform active ingredient distribution over the whole band width
- Extremely small spraying distances possible
- Suitable for PWM







E-M

### Series E



JKI approval as loss-reducing: 90%

G 1435, G 1436, G 1437, G 1438



**Current list at:** www.lechler.com/de-en/ service/loss-reducing

| Spray height<br>H | Band width<br>B | Product application quantity <sup>1</sup> [%],<br>at row spacing A |       |        |  |  |  |  |  |  |
|-------------------|-----------------|--------------------------------------------------------------------|-------|--------|--|--|--|--|--|--|
| [cm]              | [cm]            | 50 cm                                                              | 75 cm | 100 cm |  |  |  |  |  |  |
| 7                 | 10              | 20                                                                 | 13    | 10     |  |  |  |  |  |  |
| 10                | 15              | 30                                                                 | 20    | 15     |  |  |  |  |  |  |
| 13                | 20              | 40                                                                 | 27    | 20     |  |  |  |  |  |  |
| 16                | 25              | 50                                                                 | 33    | 25     |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Percentages, in comparison with full-area treatment.

### Reduction in application rate

Depending on the band and row width, the amount of spraying liquid for band spraying amounts to 10-50% of the amount for full-area treatment. Calculation formula for band and row spraying, see Lechler app.

### **Application:**



Backpack sprayer



**Band spraying** 

### Technical data:



Nozzle sizes

01 - 08



Spray angle



Materials Brass, POM



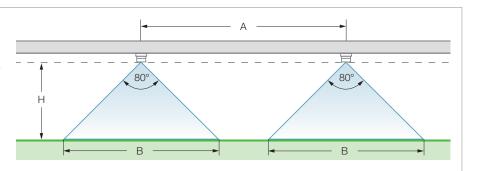
Pressure ranges 1-3-4 bar



Recommended strainers

- 80 M 01-015
- 60 M 02-04
- 25 M 05-08




**Droplet sizes** Very coarse - very fine



Width across flats

### **Nozzle adjustment**

Extremely small spray heights (H) possible with even flat fan nozzles E. Band drift can be largely avoided. The band width (B) can be adjusted by changing the spray height (H) and/or rotating the spray axis.





## Asymmetrical air-injector twin flat spray nozzles IDTA





Dimensions in mm.

### **Crop production**

- · Air-aspirating asymmetrical twin flat spray nozzle
- Extremely low-drift

### **Advantages**

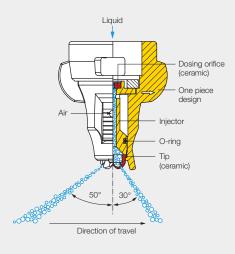
- 95% drift reduction for: IDTA 120-05 C
- 90% drift reduction for: IDTA 120-025 C to -04 C
- Ideal for higher sprayer speeds due to 30°/50° spray configuration
- Uniform deposition through 60/40 flow rate distribution
- Identical spray width on the target area due to 90°/120° spray angle
- · Optimum wetting through finer droplet spectrum to the front in direction of travel
- Drift-reducing coarser droplet spectrum to the rear
- Optimum user protection thanks to removal/installation of the injector with protective gloves without tools
- Nozzle in cap with MULTIJET bayonet system (incl. gasket)
- Suitable for PWM

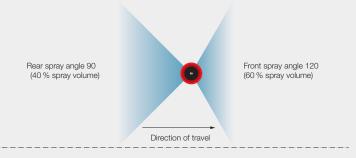


### JKI approval as loss-reducing: 95/90/75%

G 2015, G 2016, G 2017, G 2018, G 2019, G 2020, G 2021, G 2022, G 2043 JKI approval for mixed equipment and border nozzle IS.




**Current list at:** www.lechler.com/de-en/ service/loss-reducing




Ø 31 ·

Injector can be removed

without tools





### **Application:**



Plant protection products



Edge application Can be combined with border nozzle IS 80



Golf course

### **Technical data:**



Nozzle sizes 02-08



Spray angle 120° front/ 90° rear



Material Ceramic



Pressure ranges 1-4-8 bar



**Recommended strainers** 

- 80 M 02
- 60 M 025-08



**Droplet sizes** Ultra coarse - coarse





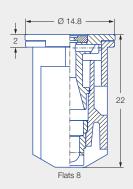
## Compact symmetrical air-injector twin flat spray nozzles IDKT



Dimensions in mm.

### **Crop production Ground care**

· Very low-drift, air-aspirating twin flat spray nozzle


### **Advantages**

- Optimum deposition thanks to symmetrical twin flat spray jet 30°/30°
- Reduced spray shadow
- 90% drift reduction for: IDKT 120-02 to -06
- Compact design
- · Low drift and loss-reducing in the pressure range up to 3 bar (depending on size)
- Suitable for PWM





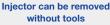
**IDKT-C** 

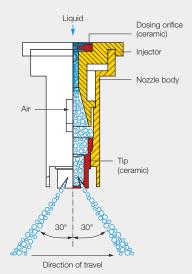


**IDKT** 

### JKI approval as loss-reducing: 90/75/50%

G 1836, G 1837, G 1865, G 1882, G 1883, G 1884, G 1911, G 1912, G 1932, G 1933, G 1934, G 1935, G 1937


JKI approval for mixed equipment and border nozzle IDKS.




**Current list at:** www.lechler.com/de-en/ service/loss-reducing

### **Series IDKT**







### **Application:**



Plant protection products

Greenhouse



Spray frame



**Edge application** Can be combined with border nozzle IDKS 80



Golf course

# Technical data:



Nozzle sizes 015-10



Spray angle 120°



Materials

POM, ceramic



Pressure ranges IDKT 015 to -025

1.5-3-6 bar

 IDKT 03 to -06 1-**1.5-3**-6 bar



### **Recommended strainers**

- 80 M 015-02
- 60 M 025-08
- 25 M 10



**Droplet sizes** Ultra coarse – medium



Width across flats 8 mm





### Air-injector off center spray nozzles IS 80



Dimensions in mm.

### Crop production

- · Air-aspirating off center nozzle for border application and banding
- Extremely low-drift

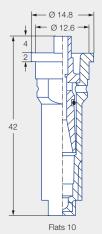
#### **Advantages**

- 90 % drift reduction for band spraying with IS 80-03
- · Same JKI drift reduction class in combination with ID/IDTA nozzles in the field spray boom
- Volume flow adapted for optimum cross distribution in combination with ID/IDTA nozzles of the same
- Asymmetrical spray pattern (20°/60° to axis)
- Precise edge application along water courses and field bounda-
- Optimum protection of neighboring crops (field border application) or row/special cultures (herbicide underleaf spraying/banding)
- Suitable for PWM



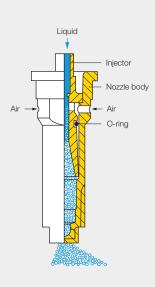
JKI approval as loss-reducing: 90/75/50%

G 1753, G 1754, G 1755, G 1999, G 2000,


JKI approval with ID/IDTA nozzles of the same size.



**Current list at:** www.lechler.com/de-en/ service/loss-reducing




Series IS 80





Injector can be removed without tools



### **Application:**



⊼ Border nozzle



**Band spraying** in orchards and vineyards



Vertical boom



Spray frame

### Technical data:



Nozzle sizes 02-06



Spray angle



Material POM



### Pressure ranges

- Field sprayer/ underleaf sprayer: 2-**4-8** bar
- Vertical boom: 2-**8-15** bar





• 25 M 05-06



**Droplet sizes** Ultra coarse - medium



Width across flats 10 mm





# Compact air-injector off center spray nozzles IDKS 80



Dimensions in mm.

### **Crop production**

### Ground care

- Compact, air-aspirating off center nozzle for border application and banding
- Very low drift

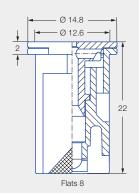
### **Advantages**

- 90 % drift reduction for band spraying with IDKS 80-025 to -06
- Same JKI drift reduction class in combination with IDK/IDKN/IDKT nozzles in the field spray boom
- Volume flow adapted for optimum cross distribution in combination with IDK/IDKN/IDKT nozzles of the same size
- Precise edge application along water courses and field boundaries
- Optimum protection of neighboring crops (field edge application) or row/special cultures (herbicide underleaf spraying/banding)
- Suitable for PWM



JKI approval as loss-reducing: 90/75/50%

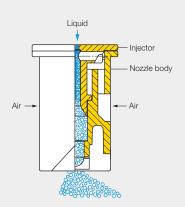
G 1786, G 1787, G 1788, G 1789, G 1998, G 2139, G 2140, G 2141, G 2142, G 2143


JKI approval with IDK/ IDKN/IDKT nozzles of the same size



Current list at: www.lechler.com/de-en/ service/loss-reducing




Series IDKS 80







Injector can be removed without tools



### Application:



Border nozzle



Plant protection in viticulture, orchard and specialty crops



Vertical boom



Spray frame



Backpack sprayer



Greenhouse

### Technical data:

Nozzle sizes 015-06



Spray angle



**Material** POM



Pressure ranges

- Field sprayer/ underleaf sprayer: 1-1.5-3-6 bar
- Vertical boom:1-8-15 bar



Recommended strainers

- 60 M 015-04
- 25 M 05-06



**Droplet sizes**Ultra coarse – medium



Width across flats
8 mm



### Twin flat spray nozzles XDT 130

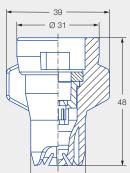


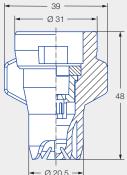


Dimensions in mm.

### **Crop production**

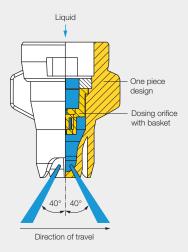
- Extreme drift reduction over the entire pressure range
- Symmetrical twin flat spray jet  $40^{\circ}/40^{\circ}$  to the front/rear


### **Advantages**


- High workrate due to wide control range
- Optimum deposition with reduced spray shadow
- Nozzle in cap with MULTIJET bayonet system (incl. gasket)
- For timely application even under adverse weather conditions
- Suitable for PWM






Series XDT 130







Dosing orifice with basket, can be removed without tools



### **Application:**



Plant protection products



Golf course

#### Technical data:



Nozzle sizes 02-08



Spray angle 130°



Material POM



Pressure ranges 1.5-8 bar



Recommended strainers 60 M 02-08



**Droplet sizes** Ultra coarse - extremely coarse





# Ball check valves and nozzle strainers



| D                                                        | esignation    | Opening pressure [bar] | Mesh<br>size | D<br>[mm] | L<br>[mm] | Material           | Strainer area (without gaskets) | Order no.         |
|----------------------------------------------------------|---------------|------------------------|--------------|-----------|-----------|--------------------|---------------------------------|-------------------|
|                                                          |               | 0.5                    | 25 M         | 14.8      | 21.5      | POM                | 628 mm <sup>2</sup>             | 065.266.56.00.00  |
|                                                          |               | 0.5                    | 60 M         | 14.8      | 21.5      | POM                | 628 mm <sup>2</sup>             | 065.265.56.00.00  |
| Ball check                                               | L             | 0.5                    | 25 M         | 14.8      | 21.0      | Brass              | 430 mm <sup>2</sup>             | 065.261.30.00.00  |
| valves <sup>1</sup>                                      |               | 0.5                    | 60 M         | 14.8      | 21.0      | Brass              | 430 mm <sup>2</sup>             | 065.260.30.00.00  |
|                                                          |               | 2.5                    | 25 M         | 14.8      | 21.5      | POM                | 628 mm <sup>2</sup>             | 065.266.56.02.00  |
|                                                          | ← D →   ← D → | 2.5                    | 60 M         | 14.8      | 21.5      | POM                | 628 mm <sup>2</sup>             | 065.265.56.02.00  |
| Ball check valve<br>(without strainer)                   | L             | 0.5                    |              | 14.8      | 18.5      | РОМ                | -                               | 065.266.56.01.00  |
|                                                          |               | -                      | 25 M         | 14.8      | 21.5      | POM                | 628 mm²                         | 065.256.56.00.00  |
| Nozzle strainers <sup>1</sup>                            |               | -                      | 60 M         | 14.8      | 21.5      | РОМ                | 628 mm²                         | 065.257.56.00.00  |
|                                                          | D - J         | -                      | 80 M         | 14.8      | 21.5      | POM                | 430 mm²                         | A424.310.50.00.00 |
| Slotted strainer                                         | L             | -                      | 25 M         | 14.8      | 21.0      | РОМ                | 430 mm²                         | 095.009.56.13.43  |
|                                                          |               | -                      | 25 M         | 14.8      | 8.5       | Cu/Monel           | 184 mm²                         | 065.252.26.00.00  |
| Cup strainers                                            |               | -                      | 25 M         | 14.8      | 8.5       | PA/Monel           | 184 mm²                         | 200.029.26.00.03  |
|                                                          | D             | -                      | 60 M         | 14.8      | 8.5       | PA/Stainless       | 184 mm²                         | 200.029.1C.01.03  |
| Nozzle strainers with integrated                         |               | -                      | 25 M         | 18.0      | 19.2      | POM,<br>Santoprene | 628 mm²                         | 065.269.7J.00.00  |
| seal, for<br>TWISTLOC                                    |               | -                      | 60 M         | 18.0      | 19.2      | POM,<br>Santoprene | 628 mm²                         | 065.268.7J.00.00  |
| Nozzle strainer<br>with integrated<br>seal, for MULTIJET |               | -                      | 60 M         | 18.8      | 19.2      | POM,<br>Santoprene | 628 mm²                         | 065.268.7J.10.00  |

 $<sup>^{\</sup>rm 1}$  Important: Color coding for strainers and check valves according to ISO 19732:2007.

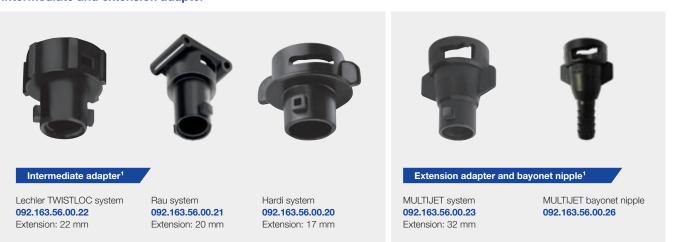


### Accessories

Optimised bayonet cap for maximum performance Improved ergonomics, enhanced functionality and sustainable materials – our new bayonet cap sets new standards!



| Description <sup>1</sup> | Color  | Order number     |
|--------------------------|--------|------------------|
| Combi Cap AF 8/AF 10     | Red    | 092.179.56.00.00 |
| Combi Cap AF 8/AF 10     | Yellow | 092.179.56.10.00 |
| Combi Cap AF 8/AF 10     | Green  | 092.179.56.20.00 |
| Combi Cap AF 8/AF 10     | Blue   | 092.179.56.30.00 |
| Combi Cap AF 8/AF 10     | Black  | 092.179.56.40.00 |
| Combi Cap AF 8/AF 10     | Orange | 092.179.56.60.00 |
| Combi Cap AF 8/AF 10     | White  | 092.179.56.50.00 |
| Combi Cap AF 8/AF 10     | Brown  | 092.179.56.70.00 |
| Combi Cap AF 8/AF 10     | Violet | 092.179.56.80.00 |
| Combi Cap AF 8/AF 10     | Grey   | 092.179.56.90.00 |




New installation tool – can also be used as a multitool for MULTIJET bayonet caps (**Order number 092.179.56.40.91**)

<sup>&</sup>lt;sup>1</sup> EasyFitCap incl. gasket, Order number: 095.015.6C.13.08

| Non-Lechler origin | Designation                                                                                                    |                                                                                                                        | Color code | Order no.        |
|--------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|------------------|
| Bayonet cap Type H | System:  - <b>Hardi</b> incl. gasket (8/10 mm AF:  095.015.73.06.36)                                           | Combi cap for nozzles with 8<br>and 10 mm AF<br>ID, IDK, IDKN, IDKT, AD, QS,<br>LU, ST, DF, IS, IDKS, OC, E,<br>FL, FS | black      | 090.078.56.00.40 |
|                    | Molded gasket<br>(in combination with nozzle<br>strainer 065.256.56.00.00 or<br>065.257.56.00.00, see Page 30) |                                                                                                                        |            | 095.015.7J.04.34 |
| Bayonet cap Type R | System:  - Rau incl. gasket (095.015.73.04.61) from year of manufacture 2000                                   | for nozzles<br>with size 8 mm AF<br>IDK, IDKN, IDKT, AD, QS, LU,<br>ST, IDKS, OC, E                                    | red        | 095.016.56.05.90 |
|                    | See bayonet cap MULTIJET above                                                                                 | for nozzles<br>with size 10 mm AF<br>ID, DF, IS, FL, FS                                                                | lavender   | 095.016.56.05.97 |

### Intermediate and extension adapter



<sup>&</sup>lt;sup>1</sup> Including gasket.

# >>> Useful aids



### Electric border nozzle kit

- Retrofittable, compact 3-way valve with integrated nozzle holders
- · Can be electrically controlled from the driver's seat
- Ideally suited for FB nozzles in combination with FD nozzles, IS nozzles in combination with ID nozzles, IDK nozzles in combination with IDKS nozzles, IDTA nozzles in combination with IS nozzles and IDKT nozzles in combination with IDKS nozzles

### **Advantages**

- · Switchover without dismounting
- Fast switching in less than 1 second
- · Minimum energy requirement, no power consumption during spraying
- · All parts made of liquid fertilizer-resistant plastic or stainless steel

Order no.: 065.290.00.00.00

### Good to know

You can find detailed information in our "Assembly Instructions Electric Border Valve Kit" and at www.lechler.com/de-en/support.



### Anemometer Pocketwind IV

- Backlit display
- Waterproof and shockproof housing
- Lanyard
- Integrated hard cover for protection against damage and dirt
- Tripod thread

### **Advantages**

- Self-calibrating humidity sensor
- Hard cover protects measuring sensors against damage
- Measures all relevant application parameters

### **Measuring functions**

- Relative humidity
  - Dew point
  - $-\Delta T$
  - Wet bulb thermometer
- Wind speed
  - Maximum
  - Average
  - Switchable units m/s, km/h, fpm, mph, kn and bft
- Temperature/wind chill units °C and °F, switchable
- Wind direction
  - Digital compass
  - Integrated wind vane



Order no.

ZWIN.DME.SS.ER.01



### Droplet size calculator/ dosage calculator

Order no.: 095.009.50.12.11



### Water-sensitive paper

Size: 76 x 26 mm

Order no.: **ZWSP.76X.26.00.00** 



### Nozzle cleaning brush

Order no.: 095.009.50.10.89



### Nozzle aligner

Order no.: 065.231.02.00.00



### Nozzle assembly wrench

Order no.: 092.164.40.00.99



### Sample bag

Field crops

Order no.: 092.251.00.00.00 / 872585

Viticulture, orchard and specialty crops Order no.: 092.251.00.10.00 / 872586



### Adjustment template for Dropleg<sup>UL</sup>

Order no.: 092.163.42.10.30



### Spray table for arable crops

DIN A4





### crops UAN

Spray table for arable

DIN A4



### Spray table for viticulture, orchard and specialty crops

DIN A5

### Nozzle calculator app

The Lechler agricultural nozzle app makes it easy to select the right nozzle for your application.

On the basis of the selected sprayer speed and application rate, the nozzle shows you the suitable nozzles and corresponding droplet size categories. This allows you to quickly find the suitable Lechler nozzle and thus optimize your application.

All values are based on measurements with water.







Apple

Android



# Spray table

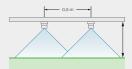
# Important information at a glance

#### Pressure

Nozzle ID 01-015: 3.0-4.0-8.0 ID 02-10: 2.0-4.0-8.0 IDTA 02-08: 1.0-4.0-8.0 1.0-**1.5-3.0**-6.0 IDK: IDKN: **1.0-3.0**-6.0 IDKT 015-025:1.5-3.0-6.0 **IDKT 03-010: 1.0-3.0**-6.0 LU: **1.5-2.5**-5.0 ST/SC: **2-3**-5 DF: **2-3**-5 **1.5-3.0**-6.0

Nozzle filter (M = mesh/inch)

General:


### 60 M

### **Exceptions:**

**80 M** ST 90-01-015; IDKT 015-02; LU 01-015; AD 015; DF 03

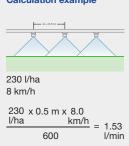
**25 M** ID 05–10; IDK 05–10; LU 05–08; ST/SC 05–08

### Height



 $80^{\circ}/90^{\circ}$ h = 60 - 75 - 90 cm

110°/120°


h = 40 - 50 - 70 cm

### **Speed**



60 s = 6.0 km/h 45 s = 8.0 km/h36 s = 10.0 km/h

### **Calculation example**



|      |          |          | IS       | 253      | 58       |    |        |            | [l/min] | 0.5m        |             |             |             |              |              |              |              |              |              |
|------|----------|----------|----------|----------|----------|----|--------|------------|---------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|
|      |          |          |          | للتلتلنا |          |    |        | bar        |         |             |             |             | [l/h        | a] <u></u>   | 0,5111       |              |              |              |              |
|      | ID       | IDTA     | IDKN     | IDK      | IDKT     | LU | AD     | -          |         | 5.0<br>km/h | 6.0<br>km/h | 7.0<br>km/h | 8.0<br>km/h | 10.0<br>km/h | 12.0<br>km/h | 16.0<br>km/h | 20.0<br>km/h | 25.0<br>km/h | 30.0<br>km/h |
|      |          |          |          | EC       |          |    |        | 1.0        | 0.23    | 55          | 46          | 39          | 35          | 28           | 23           | 17           |              |              |              |
|      |          |          |          | VC       |          | F  |        | 1.5        | 0.28    | 67          | 56          | 48          | 42          | 34           | 28           | 21           | 17           | 13           | 11           |
|      |          |          |          | VC       |          | F  |        | 2.0        | 0.32    | 77<br>86    | 64<br>72    | 55<br>62    | 48<br>54    | 38<br>43     | 32           | 24           | 19           | 15<br>17     | 13           |
|      | EC       |          |          | VC       |          | F  |        | 3.0        | 0.39    | 94          | 78          | 67          | 59          | 47           | 39           | 29           | 23           | 19           | 16           |
| 04   | EC       |          |          | VC       |          | F  |        | 3.5        | 0.42    | 101         | 84          | 72          | 63          | 50           | 42           | 32           | 25           | 20           | 17           |
| -01  | VC       |          |          | С        |          | F  |        | 4.0        | 0.45    | 108         | 90          | 77          | 68          | 54           | 45           | 34           | 27           | 22           | 18           |
|      | VC       |          |          | С        |          | F  |        | 4.5        | 0.48    | 115         | 96          | 82          | 72          | 58           | 48           | 36           | 29           | 23           | 19           |
|      | VC       |          |          | C<br>M   |          | VF |        | 5.0<br>6.0 | 0.51    | 122         | 102         | 94          | 77<br>83    | 61           | 51<br>55     | 38           | 31           | 24           | 20           |
|      | C        |          |          | 171      |          |    |        | 7.0        | 0.60    | 144         | 120         | 103         | 90          | 72           | 60           | 45           | 36           | 29           | 24           |
|      | С        |          |          |          |          |    |        | 8.0        | 0.64    | 154         | 128         | 110         | 96          | 77           | 64           | 48           | 38           | 31           | 26           |
|      |          |          |          | EC       |          |    |        | 1.0        | 0.34    | 82          | 68          | 58          | 51          | 41           | 34           | 26           |              |              |              |
|      |          |          |          | VC       | UC       | F  | М      | 1.5        | 0.42    | 101         | 84          | 72          | 63          | 50           | 42           | 32           | 25           | 20           | 17           |
|      |          |          |          | VC       | EC       | F  | М      | 2.0        | 0.48    | 115         | 96          | 82          | 72          | 58           | 48           | 36           | 29           | 23           | 19           |
|      | VC       |          |          | VC       | EC       | F  | M      | 2.5        | 0.54    | 130         | 108         | 93          | 81          | 65           | 54           | 41           | 32           | 26           | 22           |
|      | VC       |          |          | С        | VC       | F  | M<br>F | 3.0        | 0.59    | 142         | 118         | 101         | 89<br>95    | 71<br>76     | 59<br>63     | 44           | 35           | 28<br>30     | 24<br>25     |
| -015 | VC       |          |          | С        | VC       | F  | F      | 4.0        | 0.68    | 163         | 136         | 117         | 102         | 82           | 68           | 51           | 41           | 33           | 27           |
|      | VC       |          |          | С        | VC       | F  | F      | 4.5        | 0.72    | 173         | 144         | 123         | 108         | 86           | 72           | 54           | 43           | 35           | 29           |
|      | VC       |          |          | С        | VC       | VF | F      | 5.0        | 0.76    | 182         | 152         | 130         | 114         | 91           | 76           | 57           | 46           | 36           | 30           |
|      | С        |          |          | М        | VC       |    | F      | 7.0        | 0.83    | 199         | 166         | 142         | 125         | 100          | 90           | 62           | 50<br>54     | 40           | 33           |
|      | С        |          |          |          |          |    |        | 8.0        | 0.96    | 230         | 192         | 165         | 144         | 115          | 96           | 72           | 58           | 46           | 38           |
|      |          | UC       |          | EC       |          |    |        | 1.0        | 0.46    | 110         | 92          | 79          | 69          | 55           | 46           | 35           | 28           | 22           | 18           |
|      |          | UC       |          | VC       | EC       | М  | М      | 1.5        | 0.56    | 134         | 112         | 96          | 84          | 67           | 56           | 42           | 34           | 27           | 22           |
|      | EC       | UC       |          | VC       | EC       | F  | М      | 2.0        | 0.65    | 156         | 130         | 111         | 98          | 78           | 65           | 49           | 39           | 31           | 26           |
|      | EC       | UC       |          | VC       | EC       | F  | M      | 2.5        | 0.73    | 175         | 146         | 125         | 110         | 88           | 73           | 55           | 44           | 35           | 29           |
|      | VC       | VC       |          | VC<br>VC | VC       | F  | M<br>F | 3.0        | 0.80    | 192<br>206  | 160<br>172  | 137         | 120         | 96           | 80           | 60           | 48<br>52     | 38<br>41     | 32           |
| -02  | VC       | VC       |          | С        | VC       | F  | F      | 4.0        | 0.92    | 221         | 184         | 158         | 138         | 110          | 92           | 69           | 55           | 44           | 37           |
|      | VC       | VC       |          | С        | VC       | F  | F      | 4.5        | 0.98    | 235         | 196         | 168         | 147         | 118          | 98           | 74           | 59           | 47           | 39           |
|      | VC       | VC       |          | С        | С        | F  | F      | 5.0        | 1.03    | 247         | 206         | 177         | 155         | 124          | 103          | 77           | 62           | 49           | 41           |
|      | C        | VC       |          | М        | С        |    | F      | 7.0        | 1.13    | 271         | 226         | 194         | 170         | 136          | 113          | 85<br>92     | 68<br>73     | 54<br>59     | 45<br>49     |
|      | М        | VC       |          |          |          |    |        | 8.0        | 1.30    | 312         | 260         | 223         | 195         | 156          | 130          | 98           | 78           | 62           | 52           |
|      |          | UC       |          | EC       |          |    |        | 1.0        | 0.57    | 137         | 114         | 98          | 86          | 68           | 57           | 43           | 34           | 27           | 23           |
|      |          | UC       |          | VC       | EC       | М  |        | 1.5        | 0.70    | 168         | 140         | 120         | 105         | 84           | 70           | 53           | 42           | 34           | 28           |
|      | UC       | UC       |          | VC       | VC       | F  |        | 2.0        | 0.81    | 194         | 162         | 139         | 122         | 97           | 81           | 61           | 49           | 39           | 32           |
|      | UC       | UC       |          | VC       | VC       | F  |        | 2.5        | 0.91    | 218         | 182         | 156         | 137         | 109          | 91           | 68           | 55           | 44           | 36           |
|      | EC<br>EC | EC       |          | С        | VC       | F  |        | 3.0        | 1.07    | 238         | 198         | 170         | 149         | 119          | 99           | 74<br>80     | 59<br>64     | 48<br>51     | 40           |
| -025 | VC       | VC       |          | С        | VC       | F  |        | 4.0        | 1.15    | 276         | 230         | 197         | 173         | 138          | 115          | 86           | 69           | 55           | 46           |
|      | VC       | VC       |          | С        | VC       | F  |        | 4.5        | 1.22    | 293         | 244         | 209         | 183         | 146          | 122          | 92           | 73           | 59           | 49           |
|      | VC       | VC       |          | С        | С        | F  |        | 5.0        | 1.28    | 307         | 256         | 219         | 192         | 154          | 128          | 96           | 77           | 61           | 51           |
|      | VC       | VC       |          | М        | М        |    |        | 6.0        | 1.40    | 336         | 280         | 240         | 210         | 168          | 140          | 105          | 84           | 67           | 56           |
|      | VC<br>VC | VC<br>VC |          |          |          |    |        | 7.0<br>8.0 | 1.52    | 365<br>389  | 304         | 261         | 228         | 182<br>194   | 152<br>162   | 114          | 91           | 73<br>78     | 61<br>65     |
|      | , 0      | UC       | UC       | EC       | UC       |    |        | 1.0        | 0.69    | 166         | 138         | 118         | 104         | 83           | 69           | 52           | 41           | 33           | 28           |
|      |          | UC       | _        | VC       | EC       | М  | М      | 1.5        | 0.84    | 202         | 168         | 144         | 126         | 101          | 84           | 63           | 50           | 40           | 34           |
|      | UC       | EC       | EC       | VC       | EC       | F  | М      | 2.0        | 0.97    | 233         | 194         | 166         | 146         | 116          | 97           | 73           | 58           | 47           | 39           |
|      | UC       | EC       | VC       | VC       | EC       | F  | М      | 2.5        | 1.08    | 259         | 216         | 185         | 162         | 130          | 108          | 81           | 65           | 52           | 43           |
|      | EC       | VC       | VC       | VC       | VC       | F  | M      | 3.0        | 1.19    | 286         | 238         | 204         | 179         | 143          | 119          | 89           | 71           | 57           | 48           |
| -03  | EC<br>VC | VC       | VC<br>VC | VC<br>C  | VC<br>VC | F  | M<br>F | 3.5<br>4.0 | 1.28    | 307         | 256<br>274  | 219         | 192         | 154<br>164   | 128<br>137   | 96           | 77<br>82     | 61<br>66     | 51<br>55     |
|      | VC       | VC       | VC       | С        | VC       | F  | F      | 4.5        | 1.46    | 350         | 292         | 250         | 219         | 175          | 146          | 110          | 88           | 70           | 58           |
|      | VC       | VC       | С        | С        | VC       | F  | F      | 5.0        | 1.53    | 367         | 306         | 262         | 230         | 184          | 153          | 115          | 92           | 73           | 61           |
|      | VC       | VC       | С        | М        | С        |    | F      | 6.0        | 1.68    | 403         | 336         | 288         | 252         | 202          | 168          | 126          | 101          | 81           | 67           |
|      | VC       | VC       |          |          |          |    |        | 7.0        | 1.81    | 434         | 362         | 310         | 272         | 217          | 181          | 136          | 109          | 87           | 72           |
|      | VC       | VC       |          |          |          |    |        | 8.0        | 1.94    | 466         | 388         | 333         | 291         | 233          | 194          | 146          | 116          | 93           | 78           |

|     |          |         | ISC  | 253     | 58   |    |    |     | [l/min] |              |             |             |             |              | 0,5m <sub>j</sub> |              |              |              |              |
|-----|----------|---------|------|---------|------|----|----|-----|---------|--------------|-------------|-------------|-------------|--------------|-------------------|--------------|--------------|--------------|--------------|
|     |          |         |      |         |      |    |    | bar |         |              |             |             | [l/h        | a] <u></u>   | 0,5111            |              |              |              |              |
|     | ID       | IDTA    | IDKN | IDK     | IDKT | LU | AD |     |         | 5.0<br>km/h  | 6.0<br>km/h | 7.0<br>km/h | 8.0<br>km/h | 10.0<br>km/h | 12.0<br>km/h      | 16.0<br>km/h | 20.0<br>km/h | 25.0<br>km/h | 30.0<br>km/h |
|     |          | UC      | UC   | UC      | EC   |    |    | 1.0 | 0.91    | 218          | 182         | 156         | 137         | 109          | 91                | 68           | 55           | 44           | 36           |
|     |          | UC      | EC   | EC      | EC   | М  | С  | 1.5 | 1.12    | 269          | 224         | 192         | 168         | 134          | 112               | 84           | 67           | 54           | 45           |
|     | EC       | EC      | EC   | EC      | VC   | М  | С  | 2.0 | 1.29    | 310          | 258         | 221         | 194         | 155          | 129               | 97           | 77           | 62           | 52           |
|     | EC       | EC      | VC   | VC      | VC   | F  | М  | 2.5 | 1.44    | 346          | 288         | 247         | 216         | 173          | 144               | 108          | 86           | 69           | 58           |
|     | EC       | VC      | VC   | VC      | VC   | F  | М  | 3.0 | 1.58    | 379          | 316         | 271         | 237         | 190          | 158               | 119          | 95           | 76           | 63           |
| -04 | EC       | VC      | VC   | VC      | VC   | F  | М  | 3.5 | 1.71    | 410          | 342         | 293         | 257         | 205          | 171               | 128          | 103          | 82           | 68           |
|     | VC       | VC      | VC   | С       | VC   | F  | М  | 4.0 | 1.82    | 437          | 364         | 312         | 273         | 218          | 182               | 137          | 109          | 87           | 73           |
|     | VC       | VC      | VC   | С       | С    | F  | М  | 5.0 | 2.04    | 490          | 408         | 350         | 306         | 245          | 204               | 153          | 122          | 98           | 82           |
|     | VC       | VC      | С    | С       | С    |    | М  | 6.0 | 2.23    | 535          | 446         | 382         | 335         | 268          | 223               | 167          | 134          | 107          | 89           |
|     | VC       | VC      |      |         |      |    |    | 7.0 | 2.41    | 578          | 482         | 413         | 362         | 289          | 241               | 181          | 145          | 116          | 96           |
|     | VC       | С       |      |         |      |    |    | 8.0 | 2.58    | 619          | 516         | 442         | 387         | 310          | 258               | 194          | 155          | 124          | 103          |
|     |          | UC      |      | EC      | UC   |    |    | 1.0 | 1.14    | 274          | 228         | 195         | 171         | 137          | 114               | 86           | 68           | 55           | 46           |
|     |          | UC      |      | EC      | EC   | М  |    | 1.5 | 1.39    | 334          | 278         | 238         | 209         | 167          | 139               | 104          | 83           | 67           | 56           |
|     | UC       | EC      |      | VC      | VC   | М  |    | 2.0 | 1.61    | 386          | 322         | 276         | 242         | 193          | 161               | 121          | 97           | 77           | 64           |
|     | UC       | EC      |      | VC      | VC   | F  |    | 2.5 | 1.80    | 432          | 360         | 309         | 270         | 216          | 180               | 135          | 108          | 86           | 72           |
|     | EC       | VC      |      | VC      | VC   | F  |    | 3.0 | 1.97    | 473          | 394         | 338         | 296         | 236          | 197               | 148          | 118          | 95           | 79           |
| -05 | EC       | VC      |      | VC      | VC   | F  |    | 3.5 | 2.13    | 511          | 426         | 365         | 320         | 256          | 213               | 160          | 128          | 102          | 85           |
|     | VC       | VC      |      | VC      | VC   | F  |    | 4.0 | 2.28    | 547          | 456         | 391         | 342         | 274          | 228               | 171          | 137          | 109          | 91           |
|     | VC       | VC      |      | С       | С    | F  |    | 5.0 | 2.55    | 612          | 510         | 437         | 383         | 306          | 255               | 191          | 153          | 122          | 102          |
|     | VC       | VC      |      | С       | С    |    |    | 6.0 | 2.79    | 670          | 558         | 478         | 419         | 335          | 279               | 209          | 167          | 134          | 112          |
|     | VC       | С       |      |         |      |    |    | 7.0 | 3.01    | 722          | 602         | 516         | 452         | 361          | 301               | 226          | 181          | 144          | 120          |
|     | VC       | С       |      |         |      |    |    | 8.0 | 3.22    | 773          | 644         | 552         | 483         | 386          | 322               | 242          | 193          | 155          | 129          |
|     |          | UC      |      | EC      | UC   |    |    | 1.0 | 1.36    | 326          | 272         | 233         | 204         | 163          | 136               | 102          | 82           | 65           | 54           |
|     |          | UC      |      | VC      | EC   | М  |    | 1.5 | 1.67    | 401          | 334         | 286         | 251         | 200          | 167               | 125          | 100          | 80           | 67           |
|     | EC       | EC      |      | VC      | VC   | М  |    | 2.0 | 1.93    | 463          | 386         | 331         | 290         | 232          | 193               | 145          | 116          | 93           | 77           |
|     | EC       | EC      |      | VC      | VC   | F  |    | 2.5 | 2.16    | 518          | 432         | 370         | 324         | 259          | 216               | 162          | 130          | 104          | 86           |
|     | EC       | VC      |      | VC      | VC   | F  |    | 3.0 | 2.36    | 566          | 472         | 405         | 354         | 283          | 236               | 177          | 142          | 113          | 94           |
| -06 | EC       | VC      |      | VC      | VC   | F  |    | 3.5 | 2.55    | 612          | 510         | 437         | 383         | 306          | 255               | 191          | 153          | 122          | 102          |
|     | VC       | VC      |      | С       | VC   | F  |    | 4.0 | 2.73    | 655          | 546         | 468         | 410         | 328          | 273               | 205          | 164          | 131          | 109          |
|     | VC       | VC      |      | С       | С    | F  |    | 5.0 | 3.05    | 732          | 610         | 523         | 458         | 366          | 305               | 229          | 183          | 146          | 122          |
|     | VC       | VC      |      | С       | С    |    |    | 6.0 | 3.34    | 802          | 668         | 573         | 501         | 401          | 334               | 251          | 200          | 160          | 134          |
|     | VC       | С       |      |         |      |    |    | 7.0 | 3.61    | 866          | 722         | 619         | 542         | 433          | 361               | 271          | 217          | 173          | 144          |
|     | VC       | С       |      |         |      |    |    | 8.0 | 3.86    | 926          | 772         | 662         | 579         | 463          | 386               | 290          | 232          | 185          | 154          |
|     |          | UC      |      | EC      | EC   | _  |    | 1.0 | 1.82    | 437          | 364         | 312         | 273         | 218          | 182               | 137          | 110          | 88           | 72           |
|     | F        | UC      |      | EC      | EC   | С  |    | 1.5 | 2.23    | 535          | 446         | 382         | 335         | 268          | 223               | 167          | 134          | 108          | 90           |
|     | EC       | EC      |      | VC      | SG   | M  |    | 2.0 | 2.58    | 619          | 516         | 442         | 387         | 310          | 258               | 194          | 154          | 124          | 104          |
| -08 | EC       | VC      |      | VC      | SG   | M  |    | 3.0 | 3.16    | 758          | 632         | 542         | 474         | 379          | 316               | 237          | 190          | 152          | 126          |
|     | VC<br>VC | VC      |      | VC      | С    | М  |    | 4.0 | 3.65    | 876          | 730         | 626         | 548         | 438          | 365               | 274          | 218          | 174          | 146          |
|     | VC       | VC<br>C |      | С       | С    |    |    | 6.0 | 4.47    | 1073         | 894         | 766         | 671         | 536          | 447               | 335          | 268          | 214          | 178          |
|     | VC       | С       |      |         |      |    |    | 7.0 | 4.83    | 1159<br>1238 | 966         | 828         | 725<br>774  | 580          | 483<br>516        | 362          | 290<br>310   | 232          | 192          |
|     | VO       | U       |      |         |      |    |    | 8.0 | 5.16    |              | 1032        | 885         |             | 619          |                   |              |              |              | 206          |
|     |          |         |      | UC      |      |    |    | 1.0 | 2.27    | 545          | 454         | 389         | 341         | 272          | 227               | 170          | 136          | 110          | 92           |
|     | 110      |         |      | EC      | EC   |    |    | 1.5 | 2.79    | 670          | 558         | 478         | 419         | 335          | 279               | 209          | 166          | 134          | 112          |
|     | UC       |         |      | EC      | VC   |    |    | 2.0 | 3.22    | 773          | 644         | 552         | 483         | 386          | 322               | 242          | 194          | 154          | 128          |
| -10 | EC       |         |      | VC      | VC   |    |    | 3.0 | 3.94    | 946          | 788         | 675         | 591         | 473          | 394               | 296          | 236          | 190          | 158          |
|     | EC<br>VC |         |      | VC<br>C | С    |    |    | 4.0 | 4.55    | 1092         | 910         | 780<br>955  | 683<br>836  | 546          | 455               | 341<br>418   | 334          | 218          | 182          |
|     | VC       |         |      | U       |      |    |    | 7.0 | 6.02    | 1445         | 1204        |             | 903         | 722          | 557<br>602        | 452          | 362          | 288          | 224          |
|     | VC       |         |      |         |      |    |    | 8.0 | 6.43    |              | 1204        |             | 965         | 772          | 643               | 482          | 386          | 310          | 258          |
|     | 70       |         |      |         |      |    |    | 3.0 | 0.40    | 1040         | 1200        | 1102        | 900         | 112          | 040               | 402          | 000          | 010          | 200          |

# ISO 25358 classification according to droplet sizes:



Subject to modifications.

- Operating pressure at the nozzle (measured with diaphragm valve)
- The stated liter-perhectare rates apply to water
- Verify the table values by gauging the flow rates prior to every spraying season
- Pay attention to uniform nozzle adjustment



The apps for Lechler agricultural nozzles make selection and use of the optimum nozzle even easier. Find out more here: www.lechler.com/de-en/service/apps



Lechler GmbH · Precision Nozzles · Agricultural Spray Nozzles and Accessories
Ulmer Strasse 128 · 72555 Metzingen, Germany · Phone +49 7123 962-0 · info@lechler.de · www.lechler-agri.com

China: Lechler Nozzle Systems (Changzhou) Co., Ltd. • No.99 Decheng Rd, Jintan, Changzhou, JS 213200, P.R.C • Phone +86 400-004-1879 • info@lechler.com.cn

France: Lechler France SAS • Parc de la Haute Maison • 6, Allée Képler, Bâtiment C2 • 77420 Champs-sur-Marne • Phone +33 1 49882600 • info@lechler.fr

India: Lechler (India) Pvt. Ltd. • Plot B-2 • Main Road • Wagle Industrial Estate Thane • 400604 Maharashtra • Phone +91 22 40634444 • lechler@lechlerindia.com

Italy: Lechler Spray Technology S.r.l. • Via Don Dossetti, 2 • 20074 Carpiano (Mi) • Phone +39 02 98859027 • info@lechleritalia.com

Spain: Lechler, S.A. • C / Isla de Hierro, 7 – Oficina 1.3 • 28703 San Sebastián de los Reyes (Madrid) • Phone +34 91 6586346 • info@lechler.es

